098
도파민 디톡스(dopamine detox) 유행의 실체
도파민(dopamine)은 비교적 늦게 신경 전달물질로 인식되었는데 이는 도파민을 그저 에피네프린이 만들어지는 과정에서 생기는 중간물질로 봤던 때문이죠. 이제는 어느 신경전달물질보다도 많이 연구되고 있는 hot한 물질이 되었습니다. 우리 뇌에서는 뜻밖의 보상을 받았을 때 (복권당첨 등)많이 분비되기 때문에 보상회로(reward circuit)를 자극하는 물질이라고 알려져 있죠. 그래서 약물중독의 원인 물질로 알려져 있기도 합니다. 하지만 단순히 기쁨을 주는 물질은 아닌 듯 합니다. 여기서도 주장했듯이 보상의 전조가 없이 보상을 받았을 때 가장 많이 분비되고 전조가 있었음에도 불구하고 보상이 없으면 거의 분비가 멈춘다고 합니다. 이는 단순히 기쁨을 준다기 보다는 전조현상 대비 보상이 얼마나 되느냐에 따라 분비되는 정도가 결정되는 것 같습니다. 이건 사실 도박이나 마약 중독에 빠지게 되는 중요한 기전이라고 생각됩니다. 기대했던 반응보다 강하지 않으면 더 강한 것을 찾는 양성 되먹임의 효과가 생기니까요.
도파민과 관련된 신경질환으로 파킨슨병(Parkinson’s disease)이 잘 알려져 있는데, 이 병으로 죽은 이들의 뇌를 조사해보면 도파민 양이 아주 낮고, 이를 토대로 파킨슨병의 원인을 도파민 부족이라고 여기게 되었습니다. 실제로 환자들의 증세를 완화하기 위해 도파민의 전구 물질이면서 혈관-뇌-장벽을 통과하는 L-DOPA를 복용하면 증세가 완화되는 것으로 알려져 있습니다. 한편 이와는 반대로 도파민이 과다 분비되면 조현병(정신분열증, schizophrenia) 증세를 일으키는 것으로도 알려져 있습니다. 그런데 이 글에서는 도파민의 양을 조절하는 것은 도파민의 기능을 너무 단순화 시켜 생각한 것이라고 합니다. 같은 도파민 생성 뉴런이지만 기능이 다르고 자극의 결과가 상이한 종류들이 적어도 3 종류가 발견되었고 이들의 복합적인 기능을 무시하고 도파민을 투여하거나 차단한다면 부작용이 복합적으로 나타날 수밖에 없을 것입니다. 아래의 글은 “도파민 디톡스 또는 도파민 굶기(dopamine detox or dopamine starving)”라는 명칭으로 유행하고 있는 강박장애 치료법이 자칫 잘못된 이름으로 인해 약물을 통한 도파민 낮추기로 이어지는 것을 경계하여 작성된 글입니다. 인위적으로 약물이나 건강보조제를 이용해 도파민의 양을 조절한다는 것은 위험하고 부작용이 생길 수 있음을 과학적으로 설명한 것입니다.
즐거움을 주는 활동을 일시적으로 멀리하는 유행은 “도파민 (dopamine)” 재설정에 도움이 안되며 이 분자가 갖는 기능과도 부합하지 않는다고 한다.
2010년대 말부터 유행했던 도파민 디톡스(detox, 해독)이나 굶기(fasting)는 합리적인 잘 살기의 한 방법으로 소개되어 왔다. 도파민 디톡스의 정확한 정의는 언제나 가변적이었다. “The Definitive Guide to Dopamine Fasting 2.0,”의 저자인 심리학자 Cameron Sepah와 같은 다른 학자들은 이는 실제로 도파민을 낮추는 것은 아니라는 입장을 고수하며 단지 강박(장애)행동(compulsive behavior)을 줄이기 위한 인지행동 치료기법에 대한 별칭이라고 한다.
Sepah의 주장에도 불구하고 이 단어의 인기 덕에 여러 방송, 책, 그리고 건강 보조제 등을 통해 많은 사람들의 “최적의 도파민”을 만들기가 유행했다. 이에 평생 이 다양한 면이 있는 분자의 연구에 매달려온 과학자들이 분노하기도 했지만, 이 분야의 연구자라고 꼭 이 행동에 반대하는 것은 아니다. 대중매체를 검색하거나 술을 마시거나 리얼리티 TV쇼를 계속 보는 것을 멈추는 행동은 많은 사람들에게 도움이 된다. 하지만 이런 생활에 도움이 되는 행동의 원인 물질로 도파민을 넣는 것은 옳지 않다고 주장하는 것이다.
“만약 일상과 다른 행동을 한다면 좀더 새로운 것을 발견할 수 있고 이를 더 즐길 수도 있겠죠,” Northwestern University의 신경과학자인 Talia Lerner의 말이다. “이렇게 사람들에게 잘 받아들여지는 이유는 지난 수 천 년간 우리에게 익숙한 세계에 기초한 것이기 때문입니다.” Lerner가 지적했듯이 금식이나 특정행동을 금하는 것 등은 유대교, 기독교, 이슬람, 불교 등 전세계 종교의 오랜 전통이다.
“이는 원래 있었던 것입니다. 그리고 사람들은 이것의 가치를 이미 오래전부터 알고 있었지요.” Lerner의 말이다. “하지만 어떤 신경회로가 이런 활동을 가치있게 만드는지는 알려지지 않았습니다. 아마도 모두 도파민과 관련된 것은 아닐 겁니다. 이건 ‘도파민 낮추기’처럼 그리 단순한 것이 아니죠. 그래서 이 이름은 이상하기도하고 인기에 영합하는 것이며 이건 실제로도 맞지 않기 때문에 과학자들이 잘못되었다고 하는 겁니다. 그리고 이는 이 분자에 대해 대중들의 인식도 혼란스럽게 하죠.”
실제로 도파민 생성 시스템은 많은 회로와 수용체 유형과 조절자들이 관여하는 아주 복잡하고 다양한 것이다. 그래서 사실상 무의미한 “도파민 낮추기”와 같은 변형된 문구로 표현된다. 그리고 도파민은 그 동안 가장 많이 연구된 신경전달물질 중 하나 임에도 불구하고 과학자들은 이들의 기능과 행동에서의 역할에 대해 아직도 질문을 갖고 있다.
초라한 시작
도파민은 언제나 대중의 관심을 받았던 것은 아니다. 애초에는 단순히 뇌에서 아미노산의 일종인 타이로신에서 에피네프린이나 노르에피네프린으로 만들어지는 과정의 중간물질로 생각되었다. 1950년대 최초로 도파민이 자신의 역할을 하는 신경전달물질로 인식되었고 운동에서의 중요한 기능도 밝혀졌다. 그러다 사람의 뇌에 대한 사후 연구를 통해 1961년에 파킨슨병 환자의 뇌 특정 지역에 도파민이 없다는 사실이 알려졌고 이는 곧바로 환자들에게 L-DOPA를 투여하는 개기가 된다.
얼마 지나지 않아 도파민은 보상회로와 관계된 분자임이 밝혀졌다. 1970년대에서 80년대에 수행된 쥐 실험에서 뇌 안쪽 도파민 생성 신경의 세포체가 많이 존재하는 중뇌 지역에 전기 충격을 가하는 장치를 설치하였고, 쥐가 자발적으로 그 스위치 패달을 밝을 수 있게 설치하였다. 실험에 따르면 그 쥐는 1분에 110회까지 전기충격을 유발하는 패달을 계속 누르는 행동을 보였다. 이 때 전극이 설치된 도파민 생성 부위가 쥐에게 큰 기쁨을 주어 행동을 유발하는 보상중심(reward center)임을 알 수 있었다. 1980년대에 이와 비슷한 발견이 원숭이에서도 있었다.
이와 거의 동시에 도파민이 관련된 신호전달이 단순하지 않다는 것이 분명해졌다. 일단 동물이 어떤 징조가 보상과 연관되었음을 알게 되면, 이 중뇌의 도파민 생성 신경은 그 징조에만 반응하여 신경자극을 많이 생성한다. 그리고 보상을 받고 나면 그 징조를 완전 무시하는 경향을 볼 수 있었다. 즉, 징조가 있어도 잡음 정도에 해당하는 신경자극만이 생성되었다. 또한 징조가 있었음에도 보상을 받지 못하면 그 신경은 일시적으로 완전히 침묵하는 것을 볼 수 있었다. 이 현상들을 통해 과학자들은 이 도파민 신호의 목적은 보상을 나타내는 것이 아니라 예상되는 보상과 실제 보상 사이의 차이를 나타내는 것이라고 생각하게 된다.
발견 당시에는 잘 인식되지 못하였지만, 이런 초기 연구들은 단일한 도파민 생성 신경세포 집단 안에도 이질적인 집단이 있음을 알게 해주었다. 예를 들면 1992년 Schultz와 동료들은 측정한 세포들 중 보상 징조에 반응하여 신경자극을 더 많이 생성하는 세포들이 약 58%라고 보고하였다. 이는 보상 예측 오류 가설만으로는 이 신경세포들의 기능을 다 설명할 수는 없음을 알게 해준다.
미지의 도파민-세계로의 모험
기술이 발전하여 도파민 생성 시스템을 좀더 깊게 연구할 수 있게 되었고, 시냅스 연결 지도와 각 단일 세포의 전사 양상을 알 수 있게 되었다. 이들은 더 깊이 알수록 더 복잡해진다는 걸 발견할 수 있었다.
인간의 뇌에 존재하는 약 800억개의 세포 중에 약 400,000 ~ 600,000개의 세포만이 도파민을 생성하는 것으로 알려졌다. 이들은 뇌의 전 지역에 넓게 뻗어 있다. “도파민은 어느 지역에 분비되냐에 따라 기능이 다르다는 것은 분명합니다.” University of Calgary의 신경생물학자인 Stephanie Borgland의 말이다.
이에 더해 Borgland는 지난 15년간 도파민 신경들 간의 차이에 중요성을 알게 되었다. “도파민 생성 신경은 다양한 형태와 크기가 있고 어떤 것은 다른 신경전달물질도 분비하였다. 어떤 종류들은 전혀 다른 방향으로 작용하는 것을 발견할 수 있었다. 즉, 전통적으로 도파민은 측중격핵(아쿰벤스핵. nucleus accumbes) 지역을 자극하여 동물로 하여금 방금 했던 행동을 다시 하도록 만드는 것으로 알려져 있는데, 어떤 연구자들은 이 지역 외 다른 곳으로 연결된 도파민 신경들은 그 반대의 효과를 나타내는 경우도 있음을 보여주었습니다.”
더 복잡하게 만드는 건 Lerner에 따르면 도파민이 보상 예측의 오류에만 관여하는 것이 아니라 일반적인 예측에 관여하는 것 같다는 점이다. “비록 이들 징조 간에 분명한 관계가 없더라도, 징조 A가 징조 B의 단서가 된다는 것을 배우도록 도와주는 것일지도 모릅니다.”라고 말했다.
과학자들은 도파민 시스템의 요소들을 분리하는 데 진전을 보여줬다. 즉, 도파민의 수용체 5 가지 종류를 밝혀냈고 이들의 차이를 연구했다. 이들은 도파민 생성세포도 유전자 발현 양상과 기능 그리고 질병관련성에 따라 유전적으로 다른 하류집단으로 나눌 수 있었다.
하지만 아직도 도파민의 생리학과 기능을 완전히 이해하려면 멀었다. 도파민이 중요한 분자이긴 하지만 대개는 독립적으로 작용하진 않는다. 다른 신경집단이 도파민 생성 신경의 활성을 매개하며 다른 신경전달물질 예컨데 엔돌핀, 오렉신, 세로토닌 등의 물질이 도파민의 작용으로 알려진 행동에 관여한다. “우리가 알면 알수록 또 다른 질문들이 나오는 셈입니다.” Lerner의 말이다.
아직 해결해야할 문제가 많지만 Borgland와 Lerner는 도파민 굶기 또는 디톡스라는 아이디어는 도파민에 대한 과학적 지식과는 맞지 않는 것 같다고 한다.
하루 중 어느 시점에 잠깐 즐거운 활동이나 일상적인 일을 멈춘다면 후에 더 즐겁게 시작할 수 있을 것이다. 하지만 이는 도파민의 “재설정”이라고 하기는 어렵다고 Borgland는 말한다. 이는 아마도 어떤 행동을 잊게 만들거나 갈망을 막기는 불충분할 것이라고 한다.
“도파민 굶기는 이 도파민이 없는 기간 동안 당신의 뇌가 재설정 되는 것을 가정한 것입니다.” 그녀는 말을 이었다. “하지만 사실 그 기간 동안 그 (도파민 분비를 증가시키는) 행동을 하지 않은 것에 불과합니다. 그렇다고 해도 여러분이 그 습관은 그대로 갖고 있는 것과 같습니다.” 그녀는 또한 한 연구에 대해 소개했다. 쥐에게 코카인 같은 약물을 지속적으로 투여할 경우 뇌 속 여러 지역의 도파민 시스템은 약물을 금지한 후 한달 또는 그 이상 동안 변화한 상태로 남아있었다. – 이는 수명이 2~3년 정도되는 동물에겐 아주 긴 시간이다.
“도파민은 복잡하고 아주 미묘하다고 할 수 있어요.” Borgland는 말했다. “”그리고 도파민 굶기는 아마 결코 도움이 되지 않을 것 입니다.” 습관을 바꾸려면 새로운 배움이 있어야 해요. 시간이 걸리는 일이죠.”
일부 연구자들은 도파민 굶기는 그 결과가 불분명할 뿐 아니라 이 중요한 신경전달물질에 대한 잘 못된 사용이라고 우려하며 어쩌면 해로울 가능성도 있다고 한다.
“제가 걱정하는 건 만약 사람들이 (비-행동적인 방법으로) 그들의 도파민을 제거하는 경우입니다.” University of Iowa의 신경학자인 Nandakumar Narayanan의 말이다. 그는 의과학자로 파킨슨병 환자와 그 외 신경질환자들의 치료에 참여하고 있어 약물학적으로 도파민을 높이느냐 낮추는 위험성에 대해 정확히 인식하고 있다. “이는 시스템을 망칠 위험이 있어요.”라고 말했다.
“과학정보교환은 호기심을 일으키고 키우는 역할이 있다고 봅니다. 이런 것들은 공공기관의 과학자로서 중요하다고 보죠.”라고 말한다. “하지만 이게 엉뚱하게 어떤 특정 치료법의 추천으로 돌변할 때가 걱정입니다.” 특히 증거도 없이 특정 보조제나 그 밖에 제품들의 추천으로 이어질 때 문제가 된다.
“저는 객관화, 이중맹검법, 위약-대조군, 양질의 의료증거 속에서 살고 있어요.”라고 그는 말했다. “우리가 어느 증거가 진짜인지 확인하기 위해 사회에서 많은 비용을 지출하고 있어요 -그리고 저는 저의 시간 대부분을 쓰고 있죠- 그리고 이를 출판해서 많은 사람들이 읽을 수 있게 하는 거죠. 그래서 이런 일이 우리가 주목해야 할 일입니다.”
<이글은 아래의 기사를 번역한 것입니다>
Hannah Thomasy, 2024, Debunking the dopamine detox trend. The Scientist Jul 31, 2024
<원 기사의 references>
1. Trabelsi K, et al. Religious fasting and its impacts on individual, public, and planetary health: Fasting as a “religious health asset” for a healthier, more equitable, and sustainable society. Front Nutr. 2022;9:1036496.
2. Björklund A, Dunnett SB. Fifty years of dopamine research.Trends Neurosci. 2007;30(5):185-187.
3. Corbett D, Wise RA. Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: A moveable electrode mapping study. Brain Res. 1980;185(1):1-15.
4. Schultz W. Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey. J Neurophysiol. 1986;56(5):1439-1461.
5. Schultz W. Dopamine reward prediction error coding. Dialogues Clin Neurosci. 2016;18(1):23-32.
6. Ljungberg T, et al. Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol. 1992;67(1):145-163.
7. Volpicelli F, et al. Molecular regulation in dopaminergic neuron development. Cues to unveil molecular pathogenesis and pharmacological targets of neurodegeneration. Int J Mol Sci. 2020;21(11):3995.
8. Sharpe MJ, et al. Dopamine transients do not act as model-free prediction errors during associative learning. Nat Commun. 2020;11(1):106.
9. Bhatia A, et al. Biochemistry, Dopamine Receptors. In: StatPearls. StatPearls Publishing; 2024.
10. Poulin JF, et al. Classification of midbrain dopamine neurons using single-cell gene expression profiling approaches. Trends Neurosci. 2020;43(3):155-169.
11. Azcorra M, et al. Unique functional responses differentially map onto genetic subtypes of dopamine neurons. Nat Neurosci. 2023;26(10):1762-1774.
12. Kamath T, et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat Neurosci. 2022;25(5):588-595.
13. Saddoris MP, et al. Cocaine self-administration experience induces pathological phasic accumbens dopamine signals and abnormal incentive behaviors in drug-abstinent rats. J Neurosci. 2016;36(1):235-250.