2024 Topics
aging
genetics cell biology
Small RNA가 노화에 미치는 큰 영향
108
단백질이 노화에 미치는 영향은 많이 연구되고 있지만 small RNA의 영향은 알려진 것이 없다.
몸속 세포들은 어느 시점에선가 분열을 멈추기 마련인데, 일부 세포들은 DNA 손상이나 산화 같은 스트레스의 영향으로 더욱 일찍 마감한다. 지난 긴 세월동안 생물학자들은 이런 신호에 따라 단백질이 어떻게 노화를 촉진하는지 연구해왔다. 반면 RNA의 역할에 대해서는 거의 모르고 있었다.
지난 Cell지에 리보솜(ribosome)의 생성을 막아 세포분열을 막도록 하는 RNA에 대해 재조명하였다. 과학자들이 이 종류의 RNA분자가 노화에서 어떤 역할을 하는지 이해의 폭이 넓어진 것은 물론 이런 발견이 리보솜부전증(ribomopathies)을 치료하는데 새로운 정보를 제공해 줄 것이다.
리보솜은 세포가 계속 분열하도록 단백질들을 공급해주며, 따라서 세포 노화에 중요한 조절자 역할을 한다. 연구자들은 small nucleolar RNA(핵인 small RNA, snoRNA)가 리보솜 RNA의 염기를 변형한다는 사실을 밝혔으며, University of Texas Southwestern의 분자 생물학자이며 공동연구자인 Joshua Mendell은 이런 변화가 리보솜의 속도를 늦춰 세포노화를 야기하는지 알아보고 싶었다.
이 가설을 시험해보기 위해 Mendell은 발암원유전자에 의한 세포분열의 특이한 경우를 이용하기로 했다. 발암원유전자의 돌연변이는 보통 세포를 암세포로 만들기도 하지만 어떤 돌연변이는 반대의 효과를 보인다. 이들은 세포분열을 막는 Hras 발암원유전자의 돌연변이를 사람의 피부세포에서 발현되도록 만들었다. 이 Hras 돌연변이가 세포분열을 멈추는 과정에 snoRNA의 도움이 필요한지 알아보기 위해, 이들은 거의 7000개에 이르는 snoRNA의 발현을 일일이 억제하여 보았다. 그 결과 SNORA13이라고 부르는 가장 눈에 띄는 영향을 주는 small RNA를 발견하였고, 이것이 없으면 이 돌연변이 발암원 유전자는 세포분열을 멈추지 못하는 것을 발견했다.
이어진 연구에서 SNORA13은 리보솜의 활성부위에 염기를 변형시키는 것으로 나타났고, 이는 이 small RNA가 모든 단백질의 합성에 영향을 주어 세포분열을 멈추게 하는 단백질의 생성 마저도 막은 것을 의미한다. “하지만, 우리가 발견한 것은 이 snoRNA에 의해 유도된 리보솜 RNA의 화학적 변형이 노화와는 관계가 없다는 것입니다.” Mendell의 말이다. SNORA13이 있던 없던 세포내 단백질합성 양에는 변화가 없었다. “이건 우리에겐 일종의 재미있는 반전이었죠.” Mendell이 언급했다.
연구자들은 다시 처음으로 돌아와 다른 가설을 세운다: 아마도 SNORA13은 리보솜의 수를 조절해서 노화를 유도했을 것이라는 가설이다. 이를 시험하기 위해 리보솜을 원심분리기를 이용하여 대단위체(large subunit)와 소단위체(small subunit)로 분리하였고, 그 결과 SNORA13를 발현하는 세포가 SNORA13이 없는 경우에 비해 대단위체가 적은 것을 발견할 수 있었다. 이는 SNORA13이 리보솜합성을 억제한다는 것을 의미한다. 비록 SNORA13에 의해 리보솜합성이 줄어든 경우에도 리보솜 단백질 합성은 계속 일어나 세포 안을 돌아다니게 된다. Mendell과 그의 연구진이 입증한 것은 이렇게 돌아다니는 단백질들이 p53 (암억제 단백질) 신호를 유발한다는 것이다. 이 신호는 세포분열을 멈추게하고 세포를 노화하게 만든다.
이 연구에 참여하지 않았던 Medical University of Vienna의 세포생물학자인 Markus Schosserer에 따르면 저자들은 이를 입증하기 위해 다양한 각도로 여러 실험법을 이용하였다고 한다. 이어지는 연구에서는 다른 경우에, 예를 들면 세포 포화된 경우와 같은 경우, 이 SNORA13이 세포 노화를 유도하는지 알아보는 것을 제안하기도 했다. “(SNORA13가) 다른 세포에도 존재하고 필요할 까요?” Schosserer의 말이다. “이미 늙은 세포에서 SNORA13을 없에면 어떤 일이 벌어질지 알아보는 것도 재미있을 것 같습니다.” 이를 통해 세포노화를 역전시킬 가능성을 제안해본다.
임상의학의 관점에서는 SNORA13가 리보솜부전증(ribomopathies, 리보솜의 기능이나 수가 감소하여 생기는 질환)을 치료하는 연구자들에게서 관심을 끌 수 있다. “우리가 알고 있는 대부분의 리보솜형성관련 인자들은 모두 리보솜의 합성을 도와주는 것들 입니다.” 따라서 이와 같은 리보솜 합성 인자들을 표적으로 하여 치료법을 개발한다는 것은 어려운 일이다. 하지만 SNORA13은 예외적인 경우라고 할 수 있다. 이들을 억제하면 리보솜을 증가시킬 수 있을 것이기 때문이라고 Mendell은 제언한다. 마지막으로 그는 “핵산을 표적으로 삼는다는 건 어려운 일입니다. 따라서 이를 실제 임상에서 활용하려면 갈 길이 멀었다고 할 수 있죠.”
<이글은 아래의 기사를 번역한 것입니다.>
Kamal Nahas, PhD., 2024, A small RNA with a big impact on cell aging. The Scientist Oct. 1, 2024
<본문 references>
1. Kumari R, Jat P. Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 2021;9:645593.
2. Zhang QY, et al. Small non-coding RNAome changes during human chondrocyte senescence as potential epigenetic targets in age-related osteoarthritis. Genomics. 2023;115(2):110574.
3. Cheng Y, et al. A non-canonical role for a small nucleolar RNA in ribosome biogenesis and senescence. Cell. 2024;187(17):4770-4789.e23.
4. McMahon M, et al. Small RNAs with big implications: New insights into H/ACA snoRNA function and their role in human disease. Wiley Interdiscip Rev RNA. 2015;6(2):173-189.
5. Zhu H, et al. Oncogene-induced senescence: From biology to therapy. Mech Ageing Dev. 2020;187:111229.
6. Orgebin E, et al. Ribosomopathies: New therapeutic perspectives. Cells. 2020;9(9):2080.
biotechnology
cell biology
핵으로의 로켓배송
103
딱딱한 부위를 풀어주는 돌연변이는 핵으로의 이동속도를 폭발적으로 올려준다.
핵의 경계면에 있는 출입구는 언제나 붐빈다. 유전자 산물은 핵에서 시작하여 mRNA의 형태로 세포질로 이동하고, 거기서 단백질 합성의 주형으로 활동한다. 이들 중 많은 것들, 예를 들면 전사인자들이 다시 핵으로 돌아 들어간다. 핵막을 통과하기 위해서는 핵공복합체(nuclear pore complex, NPC)를 통과해야 한다. 이 단백질 복합체는 핵의 출입문 역할을 하며 핵위치신호(nuclear localization signal, NLS: 이 아미노산 서열을 가진 단백질들은 핵으로 이동한다.)를 가진 단백질 들만을 선택하여 들여보낸다.
최근에 Nature Physics에 발표된 논문에 따르면, 이 NLS 서열 가까이에 유연한 부위를 넣어주면 핵으로 들어가는 속도가 높아진다고 한다. 이 유연한 단백질을 본떠서 생물리학자들은 훨씬 더 빠른 속도로 핵으로 들어가는 단백질을 디자인했다.
“사람들은 어떻게 치료나 진단 분야뿐 아니라 순수 연구를 위해 핵으로 들여보내는 방법을 연구하기도 합니다. 이는 효율성을 높이는 등 생각보다 중요한 작업일 수 있죠.” 이 연구에 직접 참여하지 않았던 Rockefeller University의 세포생물학자인 Michael Rout의 말이다.
예전에 과학자들은 특정 분자가 핵의 경계를 넘도록 하는 NPC의 형태변화를 발견하였다. 하지만 이동하는 단백질 그 자체의 구조변화가 어떤 영향을 미치는지에 대해서는 알려진 바가 적었다. “운반되는 단백질은 장례식장의 시신처럼 보였다.-그들이 이 과정에 주인공이긴 하지만 능동적인 역할을하지는 못한다.” Rout의 말이다.
단백질의 모습과 움직임 사이에 관계를 연구하기 위해, Francis Crick Institute의 생물물리학자인 Sergi Garcia-Manyes과 학생들은 단백질이 핵으로 들어가는 시간을 재는 시스템을 개발했다. 그의 연구진은 항체단백질(Ig)을 재료로 선택했다. Ig의 두 가지 돌연변이를 주어 하나는 유연하게 하나는 단단하게 만들었다. 하지만 Ig에는 NLS이 없으니 NLS표식을 달아주는 것도 잊지 않았다. 이 돌연변이 단백질에 형광단백질을 연결하면 실시간으로 단백질의 이동을 볼 수 있다. 이제 연구자들은 이 재조합 단백질의 이동 속도를 측정할 준비가 되었고, 실험 결과 유연한 구도의 Ig domain이 단단한 구조보다 핵으로 들어가는데 걸리는 시간이 짧게 걸리는 것을 알 수 있었다.
Garcia-Manyes와 그의 연구진은 유연성이 NLS의 접근성에 영향을 주어 속도가 빨라진 것인지 알아보았다. 이 실험을 위해서는 정상 Ig유전자의 양끝에 유연성이 높은 R16단백질의 유전자를 붙여 실험하였다. 이렇게 유연한 부위를 NLS로부터 서로 다른 위치에 있도록 만든 두 단백질의 이동 속도를 비교한 것이다. 그 결과 유연한 부위가 NLS에 가까울수록 핵으로 빨리 들어가도록 만든다는 사실을 알았다.
Garcia-Manyes와 그의 동료들은 이렇게 유입 속도를 빠르게 만드는 것이 어디에 사용될 수 있는지 기능을 알아보았다. “우리 생각에는 단백질 자체의 성질을 유용하게 만들기 보다는 좀더 인공적인 것-예를 들면 분자를 설계하는 것-을 하기로 했습니다.” 이들은 단백질이 꺽이는 부분에서 흔히 발견되는 글라이신(Glycin, G), 세린(Serine, S) 다량체(GS)를 개발했다. GS하나는 거의 영향을 주지 않았고 25쌍 이상의 길이는 도리어 속도를 늦추었다. 2~4쌍 정도가 NPC를 통한 이동을 촉진하는 것으로 나타났다.
이 합성된 표식은 이동 속도를 약 2배 증가 시켰다. 하지만 변수가 있다. ”유연한 단백질의 경우는 거의 영향을 안 주었고, 아주 딱딱한 구조의 단백질에는 아주 강한 영향을 미쳤어요.” King’s College London의 생물리학자이자 동공 저자인 Rafael Tapia-Rojo의 말이다.
생물물리학자들은 실제로 자연계에서 그들의 이동을 돕기 위해 유연한 부위를 진화시킨 경우가 있는지 알고 싶었다. 예를 들면 핵단백질인 myocardin-related transcription factor A는 유연한 부위(부정형 not fixed structure)를 많이 가지고 있고 이것이 핵으로의 이동을 돕는 것일 수 있다. “다른 이동 단백질들의 위치 결정 신호 주위에 이런 유연한 구조를 갖는지 알아보는 것은 흥미운 일입니다.” Rout의 말이다.
앞으로의 실험에서 이런 단백질의 유연성이 핵 밖으로 나갈 때나 미토콘드리아 같은 세포내 소기관으로 단백질이 이동할 때 어떤 영향을 미치는지 알아볼 예정이다. “이는 특정 세포내 기관으로의 단백질 이동을 제어하는 기술로 발전할 수 있을 것입니다.”라고 Garcia-Manyes는 말했다.
<이 글은 아래의 기사를 번역한 것입니다.>
Kamal Nahas, PhD. 2024, Fast tracking protein delivery into the nucleus. The Scientist Aug 12, 2024
<원 기사의 참고문헌>
1. Lu J, et al. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun Signal. 2021;19(1):60.
2. Paci G, et al. Cargo transport through the nuclear pore complex at a glance. J Cell Sci. 2021;134(2):jcs247874.
3. Panagaki F, et al. Structural anisotropy results in mechano-directional transport of proteins across nuclear pores. Nat Phys. 2024;20(7):1180-1193.
4. Hakhverdyan Z, et al. Dissecting the structural dynamics of the nuclear pore complex. Mol Cell. 2021;81(1):153-165.e7.
5. Van Rosmalen M, et al. Tuning the flexibility of glycine-serine linkers to allow rational design of multidomain proteins. Biochemistry. 2017;56(50):6565-6574.
6. Infante E, et al. The mechanical stability of proteins regulates their translocation rate into the cell nucleus. Nat Phys. 2019;15(9):973-981.
cancer evolution
cell biology
세포가 세포를 먹는 현상을 밝히다.
097
정상적인 척추동물들의 발생과정부터 암세포의 동종포식에 이르는 다양한 과정에서 세포안에 세포가 들어가는 현상(cell-in-cell events)이 발견된다.
두 세포사이의 관계는 복잡할 수 있다. 상호 신호를 주고받을 수도 있고, 붙어 있을 수도 있고, 자원을 놓고 경쟁할 수도 있다. 하지만 2007년에 Harvard Medical School의 연구자들은 이상한 현상을 발견한다. 즉, 세포안에 세포가 존재하는 것이다.
이는 전혀 선례가 없는 것은 아니다. 소위 “세포 동족포식 (cell canabalism)”이라는 말로 면역세포가 손상된 세포를 식세포작용을 하는 경우들이 알려져 있다. 하지만 Harvard연구진이 관찰한 것은 좀 달랐다. 다른 세포에 의해 삼킴을 당했다기 보다는 다른 세포 안으로 들어간 것 같았고 들어간 뒤에도 살아있었다.
이 과정을 엔토시스(entosis)라고 불렀고 의사들이 종양에서 종종 발견하는 이상하고 징그러운 세포들을 설명해줄 것 같다. 연구자들은 이런 세포내 세포의 예들을 더 많이 발견하였고 수수께기로 남아 있었다. “우리는 이런 종류의 사건들의 기원이나 생리작용을 이해하진 못하고 있죠.” 2007년 연구의 공동 저자인 Memorial Sloan Kettering Cancer Center의 세포생물학자인 Michael Overholtzer의 말이다.
현재는 Tufts University의 생물학자인 Stefania Kapsetaki는 이 엔토시스에 대해 처음 들었을 때 즉각적으로 흥미를 느꼈다. 그녀는 예전부터 세포간의 협력이 어떻게 다세포생물의 진화에 이르게 되었는지 연구하고 있었고 다른 cell-in-cell 현상에서도 비슷한 힘이 작용했을 것이라는 가설을 세웠다. “많은 사람들이 cell-in-cell현상을 조사했지만 대부분이 한 생물에서 연구되었죠.” “그들은 이를 사회 진화의 관점에서는 보질 않았던 것 같아요.” 라고 말했다.
최근에 Scientific Reports에 발표된 논문에 따르면 Arizona State University에 소속이던Kapsetaki와 그녀의 동료들은 다른 종류의 동물이나 미생물에서 cell-in-cell 현상을 추적 연구함으로써 더 많은 정보를 제공해주었다. 이 사건이 수많은 종에서, 수 백만 년 된 유전자들이 관련되어 있다는 것을 근거로 이 cell-in-cell 현상은 고대부터 일상적인 세포 간의 상호작용이었을 것으로 여기게 되었다. 이 관찰은 이 희귀한 사건에 대한 연구의 중요성을 분명히 보여주었습니다. Kapsetaki의 말이다. 그녀는 또한 이를 단순히 질병의 증세 정도로만 보는 것에 대해서도 주의해야 한다고 했다.
이 Cell-in-cell 현상에 대해 조사하기 위해 그녀는 지난 수십년 동안의 논문들을 샅샅이 뒤졌고, 꽤 많은 다른 경우의 사례를 발견할 수 있었다: 어떤 경우는 두 세포 모두 살았고, 어떤 경우는 잡아 먹힌 세포가 죽었다. 어떤 것은 암세포와 관련되었고, 아닌 것도 있었다. Cell-in-cell 현상은 어떤 생물종에서는 생존에 필수적인 사건이다. 예를 들면, C. elegans의 경우 생식기관의 발생과정에서 다른 세포에게 산 체로 먹힘으로써 수정능을 갖게 되는 신호를 준다. 생쥐의 경우, 배아가 자궁에 착상하는 과정에서 어미의 세포 일부가 자식의 세포에게 먹히게 된다.
이런 사실들이 cell-in-cell 현상이 다양하고 널리 퍼진 현상일 것이라는 가설을 입증해 주었다. “만약 이게 쉽게 일어나는 일이라면, 왜 무슨 이유로 생물에게 상용되지 못한 걸까?” 이 연구에 직접 참여하지 않은 Overholtz의 말이다.
중요한 사실은, Kapsetaki가 단세포생물에서도 이 현상을 발견했다는 점이다. 즉, 다세포생물이 나오기도 전에 이 현상이 있었음을 말한다. 이를 확인하기 위해 이전에 cell-in-cell 현상을 일으키는 유전자들의 기원을 조사해 보았다. 어떤 유전자는 무려 십 오억 년전(1.5 billion years, 원 논문에는 2십2억년 전으로 나옴)으로 다세포생물의 출현을 앞지른다. 이 결과는 과학자들에게 새로운 고려 대상, 즉. “이 현상을 조절하는 유전자는 아주 오래된 것이라는 점.”이라고 Overholtzer는 말했다.
Kapsetaki는 이 유전자들이 그 오래전부터 실제로 cell-in-cell 현상을 주도했는지는 모르지만, 그리고 이들이 암 연구에서 발견되었지만, 이 현상이 오래 전부터 정상적인 발생의 일환으로 존재했음을 인식하는 것이 중요하다고 주장했다.
“만약 암 치료에 더 좋은 치료법을 원한다면 우리는 cell-in-cell 현상에 어떤 일들이 발생하고 있는지 면밀히 조사해야 합니다.” 라고 말했다. 그녀는 보다 다양한 생물종에서 이 cell-in-cell 현상과 암의 관계를 연구할 예정이다. 하지만 이를 위해선 cell-in-cell 현상에 대한 더 자세한 설명이 필요하다.
Overholtzer는 아직 많은 부분이 잘 알려지지 못했다는데 동의하면서, 이 논문이 entosis에 대한 연구와 암치료 약 개발가능성을 부정하는 것은 아니라고 말하며, 신진대사나 세포생장, 신호전달 등 정상 세포에서 일어나는 것들이 치료 표적이 되고 있음을 상기시켰다.
“저에게는 암을 감소시키는 다른 노력들과 별반 차이가 없다고 봅니다.” Overholtzer의 말이다. “우리가 뭘 하던 결국에는 조직에 영향을 주기 마련입니다. Cell-in-cell 현상이 특별히 다른 것은 아니고, 이들도 선택지 중 하나라고 생각합니다.”
<이글은 아래의 기사를 번역한 것입니다.>
Aparna Nathan, PhD., 2024, Study reveals a cell-eat-cell world. The Scientist Aug 13, 2024
<원 글의 references>
1. Overholtzer M, et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell. 2007;131(5):966-979.
2. Kapsetaki SE, et al. Cell-in-cell phenomena across the tree of life. Sci Rep. 2024;14(1):7535.
3. Lee Y, et al. Entosis controls a developmental cell clearance in C. elegans. Cell Rep. 2019;26(12):3212-3220.e4.
4. Li Y, et al. Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation. Cell Rep. 2015;11(3):358-365.
neuroscience
physiology cell biology
사람의 뇌는 기다릴 줄 안다.
092
세포의 숙성은 세포의 기능에 변화를 주는 유전자 발현, 신진대사 그리고 생리적 변화를 수반한다. 사람의 신경은 대부분의 다른 세포에 비해 이 과정이 훨씬 오래 걸린다. 어떤 신경 세포는 거의 20년이 걸리는 것도 있다. 가설에 따르면 이런 장기간의 숙성이 인간 두뇌의 특이한 특징을 만드는데 기여한다고 한다. “이게 사실인지 모르는 이유는 아직 실험적으로 발생과정의 기간이 신경회로에 어떤 역할을 미치는지 알아볼 수 없었기 때문이죠.” Vlaams Institute for Biotechnology의 신경생물학자인 Pierre Vanderhaeghen의 말이다.
Memorial Sloan Kettering Cancer Center의 연구진이 Nature에 발표한 논문을 통해 후성유전학적 조절이 전사과정을 방해하여 인간 두뇌의 숙성을 지연시킨 다는 사실을 보여주었다. 뇌의 발달과정에 대한 이러한 조절을 이해 함으로써 각종 뇌 질환의 연구 모델과 가능성을 한층 향상 시킬 수 있을 것이다.
인간 신경의 숙성 기전과 그 메카니즘을 연구하고 있는 Memorial Sloan Kettering Cancer Center의 발생생물학자이자 이 논문의 저자이기도 한 Gabriele Ciceri에 따르면 “이 과정은 종에 따라 특징적인 형질로 알려져 있으며, 실험실로 옮겨진 경우에도 유지되는 것으로 미루어 세포가 특정한 과정을 수행하는 속도를 조절하는 세포내 요인이 있을 것으로 여겨진다.”고 한다.
신경 숙성과 관련한 세포 수준의 조절과정을 연구하기 위해, Ciceri와 그의 연구팀은 새로운 인간 만능 줄기세포(human pluripotent stem cell, hPSC) 배양법을 개발하여야 했다. 세포분화를 유도하는 2 가지 경로를 차단하여 같은 시기에 해당하는 신경 줄기세포를 얻었다. 그리곤 이들을 신경세포로 분화시켰다.
이렇게 동기화된 신경세포 배양을 통해 시냅스 형성, 세포 길이 신장, 그리고 전기적 성질을 추적하여 100일 이상에 이르는 숙성과정을 관찰하였다. 즉, RNA-염기서열분석과 assay for transposase-accessible chromatin(ATAC) sequencing을 통해 신경신호생성과 연결 그리고 대사과정이나 면역과정에서 역할을 하는 유전자들이 점진적으로 활성화되는 과정을 보여 주었다.
연구자들은 이런 숙성과정 동안 염색체 구조와 후성유전학적 경로와 관련된 유전자들이 감소하는 것을 알 수 있었고 이들이 숙성과정을 조정하는데 어떤 역할을 하는지 알아보았다. 즉, 신경세포에서 선택적으로 이런 유전자들을 제거하여 보았다. 염색체 구조를 조절하는 유전자의 상실은 숙성과 관련된 유전자의 조기 발현을 유도하고 전기신호 생성능력이 일찍 발달하게 만들었다.
다음으로 연구자들은 히스톤 변형 효소들에 대한 억제제들을 이용하여 후성유전학적 변형이 숙성과정에 어떤 역할을 하는지 알아보았다. 이 단백질 중 3 가지에 대한 억제제가 각기 독립적으로 신경의 숙성과정을 촉진했다. 연구진은 신경숙성에 중요한 역할을 하는 특정 단백질, enhancer of zeste homolog 2(EZH2)의 기능에 초점을 두었다. 전구세포에서 EZH2를 억제할 경우 활동전위, 시냅스 표지 유전자, 그리고 숙성 RNA의 발현이 처리하지 않은 신경세포에 비해 증가하였다.
EZH2는 DNA결합 히스톤 단백질에 메틸기를 첨가하기 때문에 연구진은 숙성기간 동안 전구세포와 신경에서 이 특정한 히스톤 단백질의 변화를 살펴보았다. 전구세포에서는 시냅스형성과 관련된 유전자들 일부는 억제와 활성화 두 가지 후성유전학적 특성이 모두 나타났다. 이런 유전자들은 준비 상태임을 알 수 있다. 반면 다른 유전자들은 초기에 후성유전학적으로 억제 신호와 일치하였고, 후기로 갈수록 전사를 활성화 시키는 방향으로 히스톤이 변형된다. EZH2를 억제하면 초기 신경세포에서 억제성 변형이 줄어드는 것을 볼 수 있다.
이런 숙성 관계 유전자의 직접적인 조절 이외에도, EZH2에 의한 억제성 변형에 의해 전구세포 안에서 다른 염색질 조절 유전자들이 대기 상태를 유지하는 것을 보여 주었다. 보통 신경세포가 숙성하거나 또는 EZH2의 작용을 억제하면 이런 조절자들의 활성화로 이어지고 세포의 발생에 관여하게 된다. “우리는 이 억제 장치를 풀어 이 숙성과 관련된 유전자들의 발현을 보다 빨리 일어나게 한 겁니다.” Ciceri의 말이다.
Dl 연구에 직접 참여하지 않았던 Vanderhaeghen은 염색질 조절자들에 대한 영향은 신경세포의 숙성 속도와 일하는 것을 발견했다. 하지만 그는 어떻게 대사 과정과 같은 다른 요인들이 여기서 발견된 억제현상과 관계되는지 더 궁금해 했다. “만약 이걸 시계라고 가정한다면, 이는 하나의 시계인가요? 아니면 다른 것과 연계된 것인가요?”라고 그는 물었다.
Ciceri의 바램은 여기서 발견된 사실과 방법들이 다른 연구자들이 보다 일정한 숙성과정에서 신경활성과 발생을 연구하는데 도움이 되었으면 하는 것이다. 이는 또한 뇌의 다른 부위를 연구하거나 다른 종간에 숙성 속도를 비교하는데 도움이 될 것이라고 보고 있다. “나는 이런 일종의 후성유전학적 시계가 어떻게 조절되는지 그 기전을 알고 싶은 마음입니다.” 라며 Ciceri은 말을 마쳤다.
<이 글은 아래의 기사를 편역한 것입니다.>
Shelby Bradford, 2024, Human neurons play the waiting game. The Scientist Jun 5, 2024.
<원문 References>
1. Marchetto MC, et al. Species-specific maturation profiles of human, chimpanzee and bonobo neural cells. eLife. 2019;8:e37527
2. Sousa AMM, et al. Evolution of the human nervous system function, structure and development. 2017;170(2):226-247
3. Ciceri G, et al. An epigenetic barrier sets the timing of human neuronal maturation. Nature. 2024;626:881-890
4. Chambers SM, et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol. 2012;30:715-720
5. Maroof AM, et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell. 2013;12(5):559-572
6. Iwata R, et al. Mitochondria metabolism sets the species-specific tempo of neuronal
development. Science. 2023;379(6632):abn4705
evolution health
cell biology
아빠의 식단이 정자에 영향을 주고, 아들의 건강에도 영향을 미친다.
090
수컷의 정자에는 그가 무엇을 먹었는 지가 기록된다. 그리고 생쥐와 사람의 경우 이런 기록은 수컷 자식의 대사과정에 영향을 준다.
이 연구에서 수컷 생쥐에게 고지방 음식을 먹일 경우 이 수컷의 정자에는 특정 RNA가 축적된다는 것을 발견했다. 연구자들은 또한 이 기름진 음식을 먹은 수컷의 수컷 자손은 포도당 내성이나 당뇨와 같은 대사 이상을 초래한다. 사람의 경우는 역학 조사를 통해 과체중(high BMI)인 아빠의 아들들에게 비슷한 문제가 있다는 것이 알려졌다. 이 연구는 지난 6월 6일 Nature지에 출판되었다.
정자에 쓰여있다.
엄마의 대사적 특징은 자손에게 물려질 수 있다는 것이 알려져 있다. 아빠에 관해서는 University of Utah School of Medicine in Salt Lake City의 생식-생물학 연구자인 Qi Chen이 2016년에 발표한 바에 따르면, 고지방 식단을 먹인 아빠 생쥐의 정자에서 얻은 RNA들을 수정난에 주입하면 이때 대사 이상을 갖는 생쥐로 자라게 된다고 한다. 연구자들은 이런 부모 식단이 미치는 파급효과는 자손의 유전체에 변화를 일으키기 때문이 아니고 후성유전학적인 것이라는 것을 보여주었다. – 즉, DNA염기서열이 아니라 DNA나 연관 단백질에 붙은 화학적 표식을 통해 이루어진다.
Nature에 실린 논문에 따르면, 수컷에게 2 주 동안 고지방 식단을 제공하였다. 이런 식단은 정자의 미토콘드리아에 있는 특정 RNA에 변화를 일으켰다. 영향을 받은 것은 운반RNA(transfer RNA)였다. tRNA는 DNA에서 단백질이 나오는 과정에서 중요한 역할을 한다.
고지방 음식을 먹은 수컷 생쥐들의 정자에는 저지방 음식을 먹은 생쥐들에 비해 더 많은 tRNA의 짧은 조각들이 존재하였다. 이런 RNA조각들은 유전체에 후성유전학적 조절자로 작용할 수 있다. 예를 들면, 미토콘드리아의 특정 유전자들의 활성을 낮추거나 높일 수 있다.
스트레스 받은 미토콘드리아
이런 결과는 당연한 면이 있다: 고지방 대사는 미토콘드리아에게 스트레스를 줄 수 있고, 이런 상태에서 미토콘드리아는 더 많은 RNA를 만들 것이기 때문이다. Helmholtz CenterMunich in Neuherberg, Germany의 환경-후성유전학 연구자이며 이 연구를 이끌었던 Raff aele Teperino의 말이다.
이 연구에 직접 참여하지 않은 Chen에 따르면 정자에서의 이런 미토콘드리아의 반응은 일종의 치루는 대가(pay-off)라고 할 수 있다. 미토콘드리아의 활성이 증가하면 난자에 도달하는데 필요한 정력을 제공하는 셈이지만, 잉여의 미토콘드리아 RNA가 아빠로부터 자손에게 전달되어 유전정보를 변화시키고 자손의 건강에 문제를 일으킬 수 있다는 것이다.
Teperino의 연구진들은 세포 수준에서만 본 것이 아니라 사람의 경우 아빠가 과체중 이상인 경우 생쥐의 경우는 고지방식으로 먹인 경우를 조사했다. 후자의 경우 약 30%에서 대사이상이 발견되었다. 이어진 연구에서 고지방식을 한 생쥐의 자손에서 저지방식을 한 생쥐의 자손에서 보다 훨씬 많은 tRNA조각들이 발견되었다. 사람의 경우도 3,431명을 표본 조사한 결과 높은 BMI아빠 밑에서 나온 자식들은 대사이상이 많이 나타났다.
증거 조각들
이 연구의 한계는 이 실험에 사용된 염기서열 분석법이 오직 모든 RNA를 분석한다는 것이다. 이런 이유로 RNA 조각이 아빠에게서 배아로 왔는지 여부를 알 수는 없었다. “우린 이 조각들이 전달되었을 것이라 믿지만 증명할 수가 없었습니다.” Teperino의 말이다.
이 실험에서 아빠 생쥐는 오직 수컷 자식들에게만 대사 이상을 전해주었다. –이는 2016년도 논문과 일치하는 현상이다.- 이 사실이 Chen의 흥미를 끌었다. “이는 X정자와 Y정자는 다른 종류의 정보를 전해준다는 것을 의미합니다.”라고 말했다. 왜 X와 Y 정자가 다른 정보를 줄까? “차기 연구에 좋은 주제라고 생각합니다.”라고 말을 맺었다.
Chen의 연구는 만약 당신이 정자를 만들고 있다면 “건강하게 먹어야 합니다. 이게 정자로 흘러 들어가는 정보에 영향을 주고 결국 자녀에게 영향을 미치기 때문이죠.”
<이 글은 아래의 기사를 번역한 것입니다.>
Julian Nowogrodzki, 2024, A dad’s diet affects his sperm – and he’s son’s health. Nature News 05 June 2024.
<본문의 References>
1. Tomar, A. et al. Nature https://doi.org/10.1038/s41586-024-07472-3 (2024).
2. Chen, Q. et al. Science 351, 397-400 (2016).
health neuroscience
cell biology
급격한 스트레스가 면역계에 미치는 영향
085
급격한 스트레스는 예상되는 신체 손상에 대비하여 면역세포들을 골수로 이동시키는데. 이는 전염성 질환에 걸릴 위험이 높아지는 결과를 낳는다.
급성 또는 만성 스트레스는 백혈구세포에 영향을 주어 감염에 대항할 능력을 감소시킬 수 있다. 하지만 어떻게 뇌가 면역계와 소통하는지 알려진 바가 많지 않다. The Icahn School of Medicine at Mount Sinai, New York의 교수인 Filip Swirski는 이런 형태의 신체 기관간 정보교환의 유형을 연구하고 있다. “큰 질문은 우리 몸의 각 기관들이 어떻게 외부환경 변화나 수면, 식사, 운동, 또는 스트레스 등 생활 속 상황변화에 반응하느냐 하는 겁니다. 우리 신체는 우리가 겪는 환경의 변화에 실질적인 적응을 해야 하니까요.” Swirski의 말이다.
2022년에 Nature에 발표된 논문에 Swirski와 그의 연구진들은 생쥐에 급격한 스트레스를 가할 경우 면역계에 심각한 변화가 유도된다는 것을 보여 주었다. 즉, B세포와 T세포 그리고 비만세포(monocyte)가 림프절을 떠나 골수로 이동한 것이다. “어떻게 이렇게 빠른 시간 안에 이렇게 급격한 변화가 생기는지 모두들 놀랐습니다.” 연구-의사이며 이 논문의 제 1 저자인 Wolfram Poller가 말했다. 이런 스트레스-유도 면역계의 변화는 감염에 대한 취약성에 영향을 주고, 그 결과 독감이나 SARS-CoV-2 감염에 대한 저항력이 감소한 것이다.
이어 Swirski의 연구팀은 이런 면역계의 물리적인 변화를 유도한 뇌의 특수한 연결망을 알아 보았다. 연구진은 스트레스와 싸움-또는-도망 반응(fight-or flight response)를 관장하는 교감신경계(Sympathetic Nervous System, SNS)에 의해 조절되는 paraventricular hypothalamus(PVH)를 알아보았다. 이 PVH구역의 특정 신경세포들을 자극 또는 불활성화시킨 결과, 이들이 백혈구들의 골수로의 이동을 조절한다는 사실을 알게 되었다. 즉, SNS에 의해 스트레스호르몬(glucocorticoid)이 분비되고 이 호르몬이 백혈구에서 골수로 유도하는 주화물질(chemokine)의 수용체인 CXCR4의 발현을 높인 결과라는 것이다. 림프조직은 면역계에서 중요한 역할을 담당하기 때문에, 생쥐의 자가면역 질환에 영향을 미쳐 스트레스가 주어지면 면역세포들이 림프절에서 이동해 나가기 때문에 염증이나 마비 등의 손상이 감소하는 것으로 나타났다. 이런 실험 결과는 정신적 스트레스가 감염성 질환에 저항하는 능력을 떨어뜨린 반면에, 자가면역 질환으로 가는 반응을 완화시킬 수도 있다는 점을 보여주었다.
또한 Swirski와 연구진은 강한 스트레스에 반응하여 백혈구의 일종인 호중구(neutrophil)가 각 조직에서 늘어나는 것을 발견했다. 호중구는 조직손상을 회복하는데 역할을 하며 따라서 이들의 분포 확대는 앞으로 예상되는 조직손상에 대비하는 셈이다. 과학자들은 교감신경계를 살펴보았고 놀랍게도 호중구의 반응에는 관여하지 않는다는 사실을 발견했다. 그 대신 스트레스에 따라 변하는 근육의 단백질인 CXCL1이 혈액내 호중구의 조절자로 밝혀졌다. 뇌에서 근육을 조절하는 운동피질 부위를 자극하거나 불활성화 시켜 호중구의 반응을 제어할 수 있었다. 이는 뇌의 특정 부위가 면역계에 연결되었음을 보여주는 첫 사례라고 할 수 있다.
“이 논문이 밝힌 것은 뇌의 자세한 경로가 면역계의 서로 다른 부분을 조절하는 데 중요하다는 것입니다.” Andrew Weil Center for Integrative Medicine at the University of Arizona at Tucson의 연구책임자이며 이 연구에는 직접 참여하지 않은 Esther Sternberg의 말이다. “우리가 (상처를 입을 가능성이 많은) 싸움-또는-도망 반응이 필요한 스트레스 상황에서 면역계가 호중구가 어디에 위치해야 하는지 알려준다는 것이 얼마나 훌륭하고 놀라운 일입니까.”
스트레스가 신체의 손상에 대비하는 동안 면역반응을 완화해서 감염에 취약해지는 것이다. Swirski와 연구진은 이제 사회-경제적인 상황에 대처하면서 만성 또는 급성 스트레스를 안고 사는 사람들에게 이 발견이 제시하는 것이 무엇인지, 이들의 신체가 바이러스 감염에 준비가 되었는지 알아보고자 한다. “사회-경제적 요인이 정말 면역계에 불리하게 작용하는지 알아보기 위해 이런 관계를 알아볼 필요가 있다고 생각합니다.”고 Swirski가 말했다.
<이글은 아래의 기사를 번역한 것입니다.>
Jennifer Zieba, PhD. Psychological stress distracts the immune systems from fighting infections. TheScientist Aug 8, 2022.
<원 Reference>
W.C. Poller et al., “Brain motor and fear circuits regulate leukocytes during acute stress,” Nature, Epub ahead of print, 2022.
aging health
cell biology
뼈가 약해지는 신호: Notch 신호
083
비정상적으로 활성화된 세포내 신호를 막으면 중년 생쥐의 뼈 감소를 막을 수 있다.
사람의 뼈는 지지 역할을 하고 체내 여러 기관들을 보호하며 움직임을 가능하게 해준다. 하지만 나이가 들면 뼈는 약해지고 잘 부서지며 치료도 잘 되지 않게 된다. 이런 나이에 따른 변화는 잘 알려져 있지만 정작 이런 일이 발생하는 분자적 기전은 잘 알려져 있지 않다. 이에 연구자들은 생쥐에서 Notch 신호가 나이에 따른 뼈의 퇴화에 중요하다는 사실을 Bone Research 지에 보고하였다. 이들은 나이에 따른 뼈의 약화를 완화하는데 사용할 수 있는 신호전달의 매개분자를 밝히기도 했다.
“뼈가 늙는 것에 대한 생물학적 이해는 상대적으로 부족합니다.” Stanford University 의 발생생물학자이자 이 연구에 직접 참여하지 않았던 Charles Chan은 말을 이었다. “이 연구는 부러진 뼈를 재생하는 세포들, 즉 뼈 줄기세포들이 나이에 따라 어떻게 영향을 받는지 살펴보았기 때문에 중요합니다.”
New York University 의 정형외과 의사이자 경골생물학자인 Phillipp Leucht과 동료들은 이를 연구하기 위해 뼈 줄기세포(skeletal stem cell)와 선구세포(progenitor cells)(SSPC)에 집중했다. 이 세포들은 골수조직에 위치하며 경골발생, 유지, 그리고 회복에 중요하다. SSPC는 조골세포(osteoblast)또는 지방세포(adipocyte)로 분화할 수 있다. 이 세포들은 뼈 조직이 나이가 들수록 지방세포가 되기 쉬워지고 이는 뼈가 잘 부러지는 결과를 낳는다.
SSPC의 운명이 어떻게 결정되는지 알아보기 위해, 젊은 생쥐와 중년의 생쥐에게서 뒷다리 뼈를 얻어 single-cell RNA sequencing을 실시하여 뼈조직에 대한 유전자발현 양상을 비교했다. 예전의 결과들과 마찬가지로 뼈의 나이가 들수록 지방세포와 관련된 유전자들의 발현이 늘어나고 조골세포 유전자들은 줄어든 것으로 나타났다. 이와 함께 경골조직의 노화관련 퇴화와 Notch 신호 유전자들의 발현 증가와의 관계를 보여주었다. 이는 SSPC 세포들이 나이가 듦에 따라 이 신호가 비정상적으로 증가했음을 의미한다.
그 결과에 근거하여 연구팀은 이 Notch신호가 SSPC를 지방세포로 분화하도록 하는지 알아보았다. 이를 위해 nicastrin 유전자가 없는 생쥐를 만들었다. Nicastrin은 Notch 수용체를 잘라 Notch 신호를 활성화시키다. 따라서 이 유전자가 없으면 생쥐의 Notch신호가 차단된다. “이 생쥐는 나이가 들수록 뼈의 밀도가 높아지는 놀라운 형질을 보여주었다. - 즉, 우리가 보통 알고 있는 현상의 반대현상을 본 것이다.” Leucht의 설명이다.
이 Notch-결핍 생쥐의 전사 양상(transcriptional profile)을 보면, SSPC의 조골세포로의 분화를 유도하는 뼈 형성 유전자의 발현이 증가한 것을 발견할 수 있었다. Micro-CT를 이용해 중년에 해당하는 이 돌연변이 생쥐의 넙다리뼈(대퇴골, femur)를 찍어보면 정상 생쥐에 비해 나이에 따른 뼈의 손실이 줄어든 것을 알 수 있었다. Chan에 따르면 이 연구는 이전까지 Notch 신호가 뼈줄기세포의 노화와 연관되어 연구된 적이 거의 없었기 때문에 아주 중요하다고 한다.
비록 이 연구가 Notch신호를 제어하여 노화관련 뼈-손실을 막을 수 있음을 보여주었지만, Notch 신호를 건드리는 것은 간단하지 않다. 왜냐하면 Notch 신호는 다른 세포들의 여러 작용들과 관련되어 있기 때문이다. 보다 선택적이고 안전한 치료 표적을 발견하고자, 연구자들은 SSPC의 Notch 신호를 전달하는 분자들을 scRNA sequencing 데이터에서 찾기 시작했다. 이들이 발견한 것은 early B-cell factor-3(Ebf3)이다. Ebf3는 거의 SSPC에서만 발현되는 전사인자이기 때문에 가능성이 높았다. Notch신호가 없는 생쥐에서 Ebf3는 약하게 발현되었고, 중년이후 나이가 들수록 비정상적으로 증가하는 것으로 나타났다. 이에 더해 정상 생쥐의 SSPC에Notch 리간드를 처리하면 Ebf3가 증가하였고 Notch의 억제제를 사용하면 Ebf3의 증가가 억제되었다. 즉, 이 분자가 Notch신호를 전달한다는 것을 알 수 있다.
“이제 노화관련 뼈 질환에 대한 치료에 새로운 장이 열렸습니다.” Leucht의 말이다. “골조직내 줄기세포나 선구세포에 영향을 주는 약은 아직 없습니다.” 이번 연구 결과를 치료임상으로 전환하는 것이 Leucht와 연구팀이 앞으로 해야할 중요한 목표이다. Chan은 이러한 변화가 인간 줄기세포의 노화에서도 일어난다면 아마도 중요한 발전이 될 것이라 맏는다.
Leucht은 뼈에 열정을 가진 사람으로서 이번 연구가 다른 연구자들에게도 뼈조직을 연구하는 계기가 되길 바란다고 한다. “기초과학에서 연구되는 모든 조직 중에 뼈 조직은 관심을 덜 받는 것 같아요. 하지만 뼈는 놀라운 조직입니다.” 그는 말을 이었다. “골격은 우리 몸에서 가장 중요한 조직이라고 생각해요 왜냐하면 뼈가 없으면 우린 바닥에 넙적하게 붙어 살아야 할 테니까요.”
<이 글은 아래의 기사를 번역한 것입니다.>
Mariella Bodemeier Loayza Careaga, PhD, 2024, Molecular switch for bone loss. The Scientist Jan 23, 2024.
<원 기사의 REFERENCES>
1. Remark LH, et al. Loss of Notch signaling in skeletal stem cells enhances bone formation with aging. Bone Res. 2023;11(1):50.
2. Matsushita Y, et al. Skeletal stem cells for bone development and repair: Diversity matters. Curr Osteoporos Rep. 2020;18(3):189-198.
3. Nishida S, et al. Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J Bone Miner Metab. 1999;17(3):171-177.
4. Josephson AM, et al. Age-related inflammation triggers skeletal stem/progenitor cell
dysfunction. Proc Natl Acad Sci U S A. 2019;116(14):6995-7004.
biotechnology
cell biology
세포막 표면 RNA가 호중구(neutrophil)의 이동을 돕는다
082
새 연구에 따르면 세포막에 결합된 RNA분자가 호중구(neutropil)의 이동에 관여함을 확인하였다.
RNA는 세포 안에 머무는 일종의 집돌이 정도로 알려져 있다. 그래서 몇몇 종류의 세포에서 세포막 표면에 RNA분자가 발견되었을 때, 연구자들은 “무슨 목적이 있는 걸까?” 하고 의문을 가졌다. 최근의 연구가 그 목적 중 하나를 밝힌 것이다: 면역세포를 염증반응 지역으로 이동시키는 것이다.
지난달 Cell지에 발표된 논문에서, Yale University의 유전학자인 Jun Lu가 이끄는 연구팀의 약물학자인 Dianqing Wu는 어떻게 세포막 표면의 RNA가 호중구(neutrophil)를 혈관 내벽세포에 붙여 조직으로 빠져나가게 하는지 설명하였다(1). 이 분자를 제거하면 면역세포가 염증반응 지역으로 빠져나가는데 실패하였고, 이는 잠재적 위협에 대해 면역시스템이 어떻게 반응하는지를 보여준 것이다.
이 연구에 직접 관여하지 않았지만 glycoRNA의 존재를 밝혔던(3) Stanford University의 생화학자인 Carolyn Bertozzi에 따르면, 오랫동안 미스터리로 남았던 세포막 RNA가 지속적으로 관심을 갖고 연구하던 이들에게 마침내 보상을 주었다고 한다. “저는 이들이 (세포막 RNA를) 호중구의 작용을 매개하는 물질로 생각했다는 게 정말 흥미로웠습니다.”
세포막 표면의 RNA는 사람의 면역세포에서 처음 탐지된 2020년에야 알려지기 시작했다(2). 그 다음해에 Bertozzi의 연구팀은 암세포와 줄기세포에서 당사슬에 결합된 형태로 표면에 산재한 RNA를 발견하였다. 당단백질(glycoprotein), 당지질(glycoliid)과 마찬가지로 당RNA(glycoRNA)라고 이름 붙여진 이 새로운 분자는 면역 수용체에 붙어있어서 면역반응에서의 역할이 예상되었다.
Lu가 처음 이 논문을 접했을 때, 그의 반응은 비판적이었다. 즉, 그는 노출된 RNA분자는 어찌 되었든 혈액내 존재하는 RNA 분해 효소(RNase)에 의해 분해될 것이라고 생각한 것이다.
“이게 과연 가능 할까? 라고 고민했죠. 당시 처음 온 박사 후 연구원에게 2달 동안 이게 사실이 아님을 밝히고 그 뒤에 다른 주제로 넘어가라고 얘기할 정도였어요.”
그의 연구팀은 biotin로 표지된 당사슬에 결합하는 분자를 이용하여 호중구의 막 표면에 있는 모든 glycoprotein과 glycolipid, 그리고 아마도 glycoRNA까지 모두 표지를 달았다. 이렇게 표지된 세포에 세포막을 파괴하지 않고 일반 체내 농도보다 훨씬 고농도의 RNase를 처리한 후, 이 세포부터 RNA를 분리하였다. 만약 이 효소처리에 의해 RNA에 따라 나오는 biotin표식이 줄어들었다면, 세포 표면의 당사슬에 RNA분자가 붙어 있다는 증거가 될 것이다. 놀랍게도 표식은 없어 졌고 이는 glycoRNA가 세포 표면에 노출되어 있다는 것을 의미한다.
만약 glycoRNA가 glycoprotein이나 glycolipid와 비슷한 역할을 한다면, 아마도 면역세포의가 염증반응부위로 이동하는 것을 도울 것이다. 이를 입증하기 위해 호중구를 붉게 염색한 후 RNase를 이용하여 그들 막표면의 glycoRNA를 제거하였다. 또 다른 그룹은 녹색으로 염색한 후 표면 RNA를 제거하지 않았다. 이렇게 염색된 두 가지 호중구를 복부 염증이 있는 생쥐에 주사하였다. 그 결과 glycoRNA가 없는 세포들은 염증 부위에 도착할 확률이 떨어지는 것을 알 수 있었다.
조직에 침투하기 위해서는 우선 바깥쪽 세포에 결합하고, 이 후 몇 겹의 세포층을 통과해야 한다. Lu는 glycoRNA가 이 두 단계에 모두 관여하는지 궁금했고, 이를 위해 호중구를 배양중인 내피세포층의 한쪽에 위치시키고 반대편에 이들의 주화성물질을 넣어 보았다. GlycoRNA가 없는 호중구는 잘 결합하지 못했고 세포층을 통한 이동도 감소하였다. 이들은 내피세포층의 장벽이 없을 때는 정상적으로 이동하는 것으로 미루어 glycoRNA가 세포의 이동성에는 영향을 주지 않는 것을 알 수 있었다.
어떻게 glycoRNA가 내벽세포에 결합하는 것을 돕는지 알아보기 위해, 연구자들은 이 분자의 당과 RNA부분을 나누어 비교해보았다. 즉, 같은 세포배양 시스템에서 glycan을 과량 처리할 경우 면역세포의 내벽세포층을 통한 이동이 억제되었다. 반면 RNA를 과량 처리했을 때는 효과가 없었다. 이 발견은 - 다른 당결합 분자들과 마찬가지로 – glycoRNA의 당사슬 부위가 단단한 결합에 관여하고 RNA는 당사슬을 막표면에 가깝게 접근시키는 효과만을 갖는 다는 것을 나타낸다.
이 경우 RNA가 단순 구조물로서의 역할을 한다면 RNA의 염기서열은 중요치 않을 것이라고 설명한다. “염기서열의 기능에 대한 숨은 비밀이 있을 수 있겠죠.” Lu는 말한다. “이건 빙산의 일각에 불과 합니다.”
연구자들은 glycoRNA의 RNA가 내부에서 왔는지 또는 다른 죽은 세포에서 방출된 외부RNA에서 왔는지 알아보고자 하였다. 이를 위해 또 붉은 색과 초록색 2 가지 염색을 통해 호중구를 각각 염색하였고, 초록색으로 염색된 호중구에서만 glycoRNA를 화학적으로 표지하였다. 이 세포들을 섞어서 사흘 동안 배양하였고, 연구진은 오직 초록 세포에서만 표식을 발견할 수 있었다. 이는 RNA가 외부에서 들여온 것이 아니라 집안에서 만들어졌다는 것을 말한다.
GlycoRNA의 RNA를 분석해보면 라이보솜 RNA, transfer RNA, small nuclear RNA 등임을 알 수 있고 이는 비암호화 RNA의 재활용일 가능성을 제시한다. 이들 RNA들이 세포막으로 가는 규칙이나 어떻게 완전히 분해되지 않고 남아 있는지 등은 아직 분명치 않다.
Yale의 연구진들에겐 앞으로 계속 추궁해야 할 질문들이 있다. 각종 질병과 관련하여 glycoRNA에 변화가 있는지 연구할 계획이다. 하지만 이들을 실시간으로 분석할 기술이 없기에 어려움이 있을 것으로 예상된다. “여러 질문을 던지기 이전에 방법론적인 개선이 필요합니다.” Wu의 말이다.
<이글은 아래의 기사를 번역한 것입니다.>
Holly Barker, PhD, 2024, Cell surface RNA helps neutropils get around. The Scientist Apr 2, 2024.
<원 기사의references>
1. Zhang N, et al. Cell surface RNAs control neutrophil recruitment. Cell. 2024;187:846-860.
2. Huang N, et al. Natural display of nuclear-encoded RNA on the cell surface and its impact on cell interactions. Genome Biol. 2020;21,225.
3. Flynn RA, et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell. 2021;184, 3109-3123.e22.
neuroscience
cell biology
기억은 DNA가 잘리고 회복되면서 만들어진다.
081
생쥐의 신경세포는 염증반응의 도움을 받아 장기기억을 만든다.
장기기억(Long-term memory)이 만들어질 때 신경세포는 자신의 DNA가 끊어질 정도의 강력한 전기적 활성을 경험하게 된다. 이어서 염증반응이 일어나 이렇게 만들어진 손상을 회복하고 기억을 견고하게 만들어준다는 사실이 생쥐 실험을 통해 밝혀졌다.
지난 3월 27일 Nature에 발표된 논문의 내용은 “정말 흥미롭습니다.” 이 연구에 직접 관여하지 않은 MIT in Cambridge 의 신경생물학자인 Li-Huei Tsai의 말이다. 그들에 따르면 기억을 형성한다는 것은 “위험한 일”이라는 것을 보여준 겁니다. 그녀는 말을 이었다. 일반적으로 DNA 이중 나선의 두 가닥이 모두 끊어지는 것은 암을 포함한 질병 들과 관련되어 있다. 하지만 이 경우는 DNA가 끊어지고 회복되는 주기가 어떻게 기억이 생성되고 유지되는 지를 설명해준다.
이 논문은 또한 흥미로운 가설을 제시한다: 즉, Albert Einstein College of Medicine in New York City의 신경 과학자이며 이 논문의 공동저자 이기도 한 Jelena Radulovic은, 알츠하이머와 같은 퇴행성 신경질환 환자 들은 이 과정에 문제가 있어 신경의 DNA에 이상이 누적된 것이 아닐까? 라는 가설을 제시하였다.
염증반응
이 논문이 DNA 손상이 기억과 관계가 있다는 것을 처음 주장한 것은 아니다. 2021년 Tsai와 동료들은 DNA 이중가닥 손상이 뇌 전체에 걸쳐 일어나며 기억과 관련되어 있음을 보여 주었다.
DNA 손상이 기억형성에 어떻게 관여하는지를 보다 자세히 알아보기 위해, Radulovic과 동료들은 생쥐를 조그만 우리에 넣어 전기 쇼크를 주는 방법으로 훈련시켰고, 이렇게 훈련된 생쥐는 다시 그 케이지에 들어가면 그때의 경험을 기억하여 몸이 굳어버리는 “얼음”(“freezing”)반응을 보인다. 이때 연구자들은 기억에 중요한 역할을 하는 부위(해마 부위, hippocampus)에 신경세포들의 유전자 발현 양상을 조사하는 것이다. 이들은 훈련 후 4일이 경과했을 때 일부 염증관련 유전자들이 활성화되어 있음을 발견하였고, 3 주 후에는 이들 유전자들의 발현이 훨씬 덜 발현되는 것을 알았다.
이 연구진은 이 염증 반응의 원인 단백질을 특정했는데: 세포내 DNA 조각에 반응하는 Toll-like receptor 9(TLR9)이였다. 이 염증반응은 외부 침입자의 DNA 조각에 반응하는 것과 비슷한데, 이 경우는 신경세포 자신의 DNA 조각에 반응하는 것임을 알아냈다.
TLR9은 DNA손상에 회복반응을 하는 해마의 특정 부위 신경세포들에서 가장 활성화되어 있었다. 이 세포들은 DNA 회복 기구가 세포분열과 분화에 관여하는 세포내 소기관, 중심체(centromere)에 모여 있다. Radulovic에 따르면 대부분의 신경세포는 분열을 하지 않으니 이들이 DNA 회복에 참여한다는 건 놀라웠다고 한다. 그녀는 기억이 외부 침입자를 제거하는 기전과 비슷한 방법으로 형성되는 지 궁금했다. 달리 말하면, DNA 손상에 이은 손상-회복 주기 동안 신경세포가 기억-형성에 관한 정보를 만드는지 알고 싶었다.
연구자들이 이 TLR9유전자를 생쥐로부터 제거하면, 훈련에서 얻은 기억을 회상하는데 문제가 생기고 이들은 정상 생쥐에 비해 전기 쇼크를 받았던 상자에 들어갔을 때 훨씬 낮은 빈도로 “얼음”반응을 보인다. Radulovic에 따르면 이 발견은 “우리가 자신의 DNA를 오랫동안 정보를 유지하기 위한 일종의 신호 물질로 사용한다.”는 것을 말한다.
연구 결과의 해석
이들의 발견이 그 동안 기억에 관해 알려진 사실들과 어떻게 맞아 들어갈지는 아직 확실치 않다. 예를 들어, 연구자들은 engram(기억의 잔상)이라고 부르는 해마 속 일군의 신경세포들(잔상세포)을 발견했다. 이 세포들은 각 기억에 대한 물리적 흔적이라고 할 수 있고, 학습이 이루어질 때 특이한 유전자들이 발현된다. 그런데 Radulovic과 동료들이 발견한 기억-관련 염증반응은 주로 잔상세포들이 아닌 세포에서 관찰되었다고 한다.
Trinity College Dublin의 회상 신경학자인 Tomás Ryan는 “이 연구는 DNA 손상, 회복이 기억에서 중요하다는 것을 보여준 현재까지의 증거 중 가장 좋은 것”이라고 했다. 그러나 그는 이 신경들이 기억의 잔상을 만들었다는 것에 대해 의문을 갖는다. - 대신, DNA 손상과 회복은 잔상 생성의 결과로 일어난 것일 수 있다는 것이다. “잔상을 만드는 것은 충격이 큰 사건입니다; 이후에 다시 원상 회복을 위해 많은 일을 해야 하는 거죠.” 그의 주장이다.
Tsai도 이어지는 연구에서 어떻게 DNA의 double-strand break가 일어나는지, 다른 뇌 부위에서도 일어나는지 밝혀지기를 바란다고 했다.
Ryan과 함께 Trinity College Dublin에 근무하는 신경과학자인 Clara Ortega de San Luis는 이런 결과들이 기억 형성의 기전과 세포내 환경 유지에 그 동안 요구되었던 깊은 관심을 불러일으켰다고 했다. “우리는 신경세포간의 연결과 가소성 등에 대해 많은 것을 알고 있지만, 정작 신경세포 안 일어나는 일에 대해서는 그만큼 알지 못하는 것 같아요.”라고 말했다.
<이글은 아래의 기사를 번역한 것입니다.>
Max Kozlov, 2024, Memories are made by greaking DNA-and-fixing it. Nature News 27 March 2024.
(doi: https://doi.org/10.1038/d41586-024-00930-y)
<원 기사의 references>
1. Jovasevic, V. et al. Nature 628, 145–153 (2024).
2. Stott, R. T., Kritsky, O. & Tsai, L.-H. PLoS ONE 16 , e0249691 (2021).
3. Josselyn, S. A. & Tonegawa, S. Science 367, eaaw4325 (2020).
health
physiology cell biology
T 세포가 기억해야할 신호
075
T 세포가 기억해야할 신호
일반적인 신호전달 과정의 적절한 제어는 폐 T세포로 하여금 인플루엔자(influenza)에 대한 기억을 유지시킨다.
질병에 따라 몇몇 백신은 평생동안 면역성을 부여한다. 하지만 인플루엔자(influenza: 독감바이러스)의 경우는 면역력을 유지하기 위해 매년 백신을 맞아야 한다. 그 이유 중 하나는 폐 T세포가 불과 몇 달 밖에 살지 못하기 때문이다. 폐에서 어떻게 병원체에 대한 기억을 강화 유지 시키는지 이해하는 것이 궁극적으로 호흡기 질환의 방어에 도움이 될 것이다.
최근에 University of Missouri의 면역학자인 Emma Teixeiro-Pernas와 그녀의 연구팀은 면역 신호전달에 중요한 역할을 하는 전사 인자, nuclear factor kappa B(NF-kB)가 폐에서 기억 T세포의 집단을 조절할 수 있음을 Nature Communication지에 발표했다.
Teixeiro-Pernas는 이전 연구에서 CD8+ T세포에서 T cell receptor(TCR)의 신호를 조절하는 것이 이펙터 T 세포(effector T cell)과 기억 T세포(memory T cell)가 만들어지는 과정을 이해하는데 도움이 될 것임을 알았다. 그 후속 연구로 그녀는 TCR이 조절하는 NF-kB 신호전달과정이 기억 T세포를 만들고 유지시킨다는 것을 알아냈다. 이 연구 결과로 그녀는 NF-kB 신호경로가 다른 조직, 즉 폐 같은 조직에서도 같은 역할을 하는지 알아보는 계기가 되었다.
이를 위해 연구 팀은 NF-kB 분자의 발현을 항생물질인 doxycycline으로 조절할 수 있는 형질전환 생쥐를 만들었다. 이 생쥐에 인플루엔자를 감염시키고 닷새 뒤 doxycycline을 먹이기 시작하여 25일간 먹였다. 이들은 폐에 위치한 memory T cell의 수를 측정하기 위해 폐의 혈관을 염색했다. Teixeiro-Pernas와 그녀의 연구팀은 NF-kB를 증가시키기 위해 doxycycline을 먹인 생쥐들의 폐에서 도리어 memory T cell 집단이 줄어든 것을 볼 수 있었다. 이 집단은 NF-kB의 발현을 낮추자 다시 증가하였다. Teixeiro-Pernas의 해석에 따르면 NF-kB 신호는 폐에서 memory T cell의 생성을 억제한 것이다.
Teixeiro-Pernas의 다음 질문은 T cell이 언제 감소하는 시기이다. 인플루엔자를 감염시킨 후 10일부터 30일까지 T cell 집단의 크기 변화를 추적했더니, T cell의 지표와 빈도가 10일부터 20일까지 계속 감소하는 추세를 보였다.
Teixeiro-Pernas와 그녀의 연구진은 이전의 연구에서 일단 memory T cell이 되고 나면 그들의 수명은 NF-kB 분자의 양에 비례했기 때문에 의문을 갖게 되었다. 이를 규명하기 위해 이들은 memory T cell이 형성된 이후인 감염 후 30일째에 NF-kB 발현을 유도해 보았다. 그 결과 폐 memory T cell의 수가 4배 증가한 것을 관찰할 수 있었다. “이 결과는 NF-kB 신호가 memory T cell의 생성에 중요한데 이게 한 방향이 아니라는 것을 말합니다.” Teixeiro-Pernas의 설명이다. “면역반응의 어느 시점 이냐에 달려있습니다. 언제 개입할 것인가를 알려주기 때문에 중요한 문제입니다.”
“이런 설계는 매우 전략적인 것입니다.” Memory T cell의 조절을 연구하며 이 연구에는 직접 참여하지 않은 University of Minnesota의 면역학자인 Stephen Jameson의 말이다. 그는 이 연구팀이 신호경로를 조절하는 오래된 방법을 개선한 것과 T 세포 수용체를 통한 신호의 세기와 기간이 T cell의 수명을 결정한다는 가설을 확인한 점을 높게 평가하였다.
Teixeiro-Pernas는 memory T cell 수준이 낮아서 문제인 암과 면역세포가 과도하게 만들어지는 자가면역 질환에 의미 있는 발견이 될 것이라고 믿는다.
Jameson에 따르면 memory T cell을 보는 시각에 변화를 주었다고 한다. 하지만 이 발견들이 실제 치료제에 적용되기 위해선 보다 많은 노력이 필요하다. “우리가 폐의 취약 지구에 면역성을 높이기 위해 memory T cell을 더 늘리는 방법을 알게 된 것은 좋은 소식입니다. 반면에 너무 면역반응이 너무 세지면 우린 더 이상 숨을 쉬지도 못하게 될 것입니다. 이건 안 좋은 소식이 되겠죠.”라며 신중하게 말했다.
<이글은 아래의 기사를 번역한 것입니다,>
Patience Asanga, 2024, A signal for T cell to remember. The Scientist Feb 22, 2024
<원 기사의 REFERENCES>
1. Pritzl, C.J. et al. IKK2/NFkB signaling controls lung resident CD8+ T cell memory during influenza infection. Nat Commun 2023;14:4331.
2. Teixeiro, E. et al. Different T Cell Receptor Signals Determine CD8+ Memory Versus Effector Development. Science 2009;323:502-505.
3. Knudson, Karin M., et al. NFκB–Pim-1–Eomesodermin axis is critical for maintaining CD8 T cell memory quality. PNAS. 2017;114(9):1659-1667.